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Abstract 
 
A Fortran subroutine CMWALL is described, which is an implementation of the 
collective information from classical methods-based wall corrections.  These methods use 
established closed-form expressions which were developed based on simple linear 
potential-based methods.  Since both the NASA LaRC 14x22-Ft Subsonic Tunnel and the 
National Transonic Facility (NTF) are rectangular in cross-section, this commonality has 
been taken advantage of in the implementation of the method.  This is a simple and rapid 
tool to calculate corrections due to wall interference, designed to be easily implemented 
in the existing tunnel data reduction programs, either as real-time or post-point.  It is 
however important to realize that the method is based on the simplifying assumptions of 
linearity, small model and attached flow.  The computed results are thus to be viewed as 
‘first-cut’ estimates, to be refined further using more complex methods based on 
measured wall pressures (known as wall signature methods).  
 
The inputs required for CMWALL relate to the tunnel configuration and model geometry  
(assumed to be constant for a test) and test point measurements of tunnel reference 
parameters, model forces and moments.  The geometry inputs are provided as a data 
block which can be easily set up prior to the test.  Test data are provided and transmitted 
to CMWALL in the subroutine call list. 
 
Three test cases are presented to illustrate the application of the method.  A summary of 
results in each case is presented in a composite plot of the corrections.   
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1. Introduction 
 
Classical methods-based wall corrections can be calculated using established closed-form 
expressions which were developed based on simple linear potential-based methods, 
subsequently enhanced empirically from experimental data and test experience.  
Literature on the subject from 1970 and earlier is available in the form of various reports, 
papers, charts and tables.  A Fortran subroutine CMWALL has been developed, which is 
an implementation of the collective information contained in these sources, resulting in a 
simple and rapid tool to calculate corrections due to wall interference.  Since both the 
NTF and 14x22-Ft Subsonic Tunnel are rectangular in cross-section, there is considerable 
amount of commonality in implementation. 
 
The inputs required for CMWALL are of two types: (1) tunnel configuration and model 
geometry inputs (which are assumed to be constant for a test) and, (2) test point 
measurements of tunnel reference parameters, model forces and moments.  Inputs of type 
(1) are provided as a data block which can be easily set up prior to the test.  Inputs of  
type (2) are provided and transmitted to CMWALL in the subroutine call list.  The 
subroutine is thus designed to be easily implemented in existing tunnel data reduction 
programs.  It is, however, important to realize that the method is based on the simplifying 
assumptions of linearity, small model and attached flow.  The computed results are thus 
to be viewed as ‘first-cut’ estimates, to be refined further using more complex methods 
based on measured wall pressures (known as wall signature methods). 
 
2. Wall Correction Basics 
 
The subject of wall correction is an important part of wind tunnel experimentation and 
has been extensively studied for the last 50 years.  Key concepts in wall correction, 
important in the use of CMWALL, are summarized below. 
 
Wall interference refers to the changes in the measured tunnel and model parameters due 
to the model being enclosed in a tunnel.  In the case of solid or ventilated walls, the 
streamlines in the wall region are constrained to a shape that is different from what exists 
in free air.  This in turn changes the boundary conditions, which makes the tunnel flow 
around the model substantially different from the free-air flow.  The tunnel-measured 
values represent this changed flow, which needs to be corrected to remove the effect of 
the walls.  In other words, corrections are applied to the measured and derived values to 
get the equivalent free-air values (i.e., when the walls are removed). References 1 and 2 
(AGARD reports AG-109 and AG-336) give a comprehensive review on the topic of wall 
interference.  The first report is a collection of work, mostly of classical nature, prior to 
1966.  The second report summarizes subsequent work until 1998 which includes more 
advanced computational methods. 
 
The classical approach to wall correction is based on replacing the model in the tunnel by 
equivalent singularities and the principle of superposition.  Consider a three-dimensional 
point source in free-stream simulating a Rankine forebody.  The free-air solution is given 
by the sum of the free-stream potential and the source potential.  The perturbation 
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velocities in free-air are simply the derivatives of the source potential.  When this 
singularity is enclosed by four solid walls, flow tangency is imposed at the boundaries 
which is obtained by placing an infinite number of singularities at reflection locations off 
the walls, following the well-known method of images.  Therefore, the additional 
perturbation potential introduced by the walls is the sum of all the image potentials.  
Correction for wall interference thus corresponds to the sum of reflection potentials, 
which can be evaluated once the original singularity strength is known. 
 
Wall interference correction is thus a spatially varying function.  The traditional 
assumption is that the perturbation velocity field can be approximated by a change in the 
angle of attack and the tunnel velocity (wall interference-induced gradient effects in the 
flow such as axial buoyancy and streamline curvature are also accounted for in an 
approximate manner).  Any left-over differences are usually second-order effects.  
However, when they become significantly large such as in the case of a large model, the 
measured data may become uncorrectable by traditional methods. 
 
The perturbation velocity field is usually computed using a simplified representation of 
the model consisting of potential singularity elements such as point sinks, point sources, 
and point or line doublets.  Once the perturbation velocity solution with the appropriate 
boundary condition imposed is known, wall corrections can be quantified by averaging 
the interference flow field  along model or tunnel reference lines.  Primary wall 
interference corrections are given in terms of a blockage correction ε and an angle of 
attack correction ∆α. 
 
The blockage correction ε is obtained as the average of streamwise perturbation velocities 
(normalized by tunnel reference velocity) along the model axis.  This is proportional to 
the ratio of the maximum model frontal cross section area to the tunnel cross section area.  
This correction is applied to the measured values of Mach number M and dynamic 
pressure Q.  The corrections for M and Q are obtained as 
 

εγ







 −+=∆ 2

2

1
1 M

M

M
  (1) 

( )ε22 M
Q

Q −=∆
   (2) 

 
The angle of attack correction is obtained as a weighted average of the perturbation 
velocity in the lifting direction.  The wing ¼ chord line is the reference line customarily 
used for this averaging.  An additional term is added to include the effect due to 
streamline curvature.  These primary mean corrections translate to equivalent corrections 
on force and moment coefficients.  A buoyancy correction (on CD) due to wall 
interference is also computed  from the wake blockage gradient.  Pitching moment 
correction is computed based on the change in flow curvature calculated from the change 
in the angle of attack correction from ¼ chord to ¾ chord. 
 
To summarize, classical wall corrections for a test point are reported as follows: 
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1. A blockage parameter, ε and an angle of attack correction, ∆α; these are the primary 

corrections obtained by averaging the perturbation flow field. 
2. Corrections on tunnel Mach number and dynamic pressure, which are functions of     

the blockage parameter, ε. 
3. Corrections on lift, drag and moment coefficients which result from the changed 

tunnel reference velocity, angle of attack and flow gradients.  These are derived 
corrections obtained from the primary corrections and the uncorrected coefficients. 

 
The free-air or corrected values are obtained by adding the corrections to the measured 
values.  For a lifting model in a solid-walled tunnel, the free-air or corrected values of M, 
Q, α, CD are larger than the measured values;  free-air CL is usually decreased.  In 
general, slotted-wall corrections tend to be much smaller than the solid-wall corrections. 
 
3. Elements of the Classical Method 
 
The tunnel configuration (height, width, cross section area) is first set depending on the 
facility and model type (full- or semispan), which are input to CMWALL.  For a 
semispan model, the mounting wall becomes a reflection plane resulting in effectively 
doubling the tunnel cross section perpendicular to the reflection wall.  Tunnel height (H),  
breadth (B) and cross section (C) are thus  redefined based on the model type and 
orientation. 
 
The model blockage parameter is first calculated assuming solid tunnel wall boundaries.  
This consists of three parts, viz., blockage due to wing volume εw, blockage due to 
fuselage volume εf, and blockage εwk due  to the model wake region.  Details are given in 
the next section.  Total blockage is obtained by summing the three parts (as in Ref. 3, 
Barlow, Rae and Pope). 
 
The downwash or angle-of-attack correction is obtained from the boundary correction 
factors δ0 and δ1 as a function of effective jet width, which is in turn a function of wing 
aspect ratio, taper ratio and tunnel aspect ratio (see Ref. 3).  The force and moment 
coefficients are then corrected based on the blockage and the angle of attack correction.  
Pitching moment correction is calculated based on the streamline curvature.  Details are 
again given in the next section. 
 
For the NTF slotted-wall case, the additional parameter Ωs as well as new values of δ0, δ1 
are obtained from the work of Pindzola and Lo (Ref. 4).  These are slotted-wall results in 
the form of tables as a function of the tunnel openness parameter and the tunnel aspect 
ratio.  The solid-wall blockage and upwash corrections are then adjusted based on these 
interpolated values. 
 
A schematic of the calculation sequence in CMWALL is shown in Fig. 1.  Detailed 
expressions are given in the next section. 
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Figure 1.  Schematic of the Calculation Sequence in CMWALL. 
 

 
4. Detailed Formulation for Blockage 
 
Ref. 3 has the generally-accepted formulation for model blockage based on earlier work, 
especially Herriot (Ref. 5). 
 
As stated in Ref. 1 (AGARD 109), “…the model and its wake occupy a certain volume 
within the tunnel stream.  The streamline pattern about the model is thereby distorted 
compared with free-air conditions…interference associated with the model itself is called 
“solid blockage”, and that due to the wake, “wake blockage”.  For most purposes, it is 
sufficiently accurate to assume that the two blockage components are independent both of 
each other and of the model lift.”  The important assumptions are that the model is small 
compared to the tunnel section and that the lift is not too large.  Blockage is assumed to 
influence only the longitudinal component of the flow about the model.  The model is 
assumed to be mounted in the center of the tunnel. 
 
Blockage due to the model support and its wake should be accounted for separately and 
added to model blockage.  This is not an issue usually for semispan models since there 
are no support elements in the tunnel stream.  If a semispan standoff plate is used, it can 
be considered as a part of the fuselage unless the lift coefficients with and without the 
standoff plate are significantly different (see Ref. 6).  For full-span models, blockage due 
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to the aft sting (NTF), canon and post or floor-mounted post (14x22-Ft Subsonic Tunnel) 
is to be accounted for separately.  This blockage may be a function of the pitch angle.  It 
is preferable to measure this directly, or estimate it using a wall signature method such as 
the Transonic Wall Interference Correction System (TWICS, Ref. 7). 
 
The corrections due to solid-wall boundaries are described here. Adjustments required for 
slotted walls are given in a separate section. 
 
Blockage due to the wing: 
 
The method is based on summation of a series of doublet images representing the model 
(Ref. 3).  For a semispan wing, calculations are based on the equivalent full-span wing in 
the equivalent doubled test section.  The wing shape factor 1,wk  is first obtained from a 

table as a function of the  wing cross section geometry type (selected as the section 
closest to the NACA 4-digit series, 64, 65 or 66 series; choice of NACA 4-digit series 
should be sufficiently accurate in most cases) and the average wing thickness ratio 
( / )avt c .  The data for the table is taken from Ref. 3, Fig. 10.2, p.369.  The tunnel shape 

factor wτ  is then obtained from a table as a function of the wing span to tunnel breadth 

ratio and the tunnel aspect ratio.  Note that breadth and height are defined in directions 
perpendicular and parallel respectively, to the lift vector direction.  The data for the table 
is taken from Ref. 3, Fig. 10.3, p.369.  The incompressible blockage wε  due to the wing 

is then calculated as 

1,
3 / 2

w w w
w

k V

C

τ
ε =    (3) 

where wV  is the wing volume (a good approximation is 0.7 ( / )avt c refS C, where refS  is 

the wing planform area) and C is the test section area equal to BH. 
 
Blockage due to the fuselage: 

The body shape parameter 3, fk  is obtained from a table as a function of the ratio eq

f

d

l
, 

where eqd  is the equivalent fuselage diameter and fl  is the fuselage length.  The data for 

the table is taken from Ref. 3, Fig. 10.2, p.369.  The blockage factor fτ  is obtained from 

a table (based on Ref. 3, Fig. 10.3, p.369) as a function of the tunnel aspect ratio with 
fuselage diameter to tunnel width ratio assumed to be zero.  The blockage fε  due to the 

fuselage is then calculated as 

3,
3 / 2

f f f
f

k V

C

τ
ε =    (4) 

where fV  is the fuselage volume (a good approximation is 0.45 2
maxfl d ). 

Note that both wε  and fε are equal to a constant times the corresponding volumes 

divided by  3/ 2C .  The constant is in the range 0.9 to 0.96 depending on the geometry. 
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Wake blockage: 
 
The wake blockage is calculated by assuming an attached wake1.  The attached wake 
model uses an image system based on a three-dimensional source at the trailing edge.  
This involves subtracting from the measured drag, the drag due to lift (induced drag), 
which results in the apparent drag ,D aC  defined as 

2 2
, ,

, , ,2
L u ref L u

D a D u D u
C S C

C C C
ARb ππ

= − = −  (5) 

 
Here the subscript u refers to uncorrected measured values. refS is the wing reference 

area, b is the span of the wing and AR is the wing aspect ratio.  Note that for a semispan 
model, values corresponding to the equivalent full-span wing are used.  ,D aC  should be 

nearly same as the minimum drag  ,0DC ;  ,D aC  is however used here because it can be 

calculated directly.  The wake blockage is then calculated as 
 

,

4
D a ref

wk
C S

C
ε =     (6) 

 
The longitudinal gradient of wake blockage along the tunnel centerline creates a 
buoyancy drag (Ref. 2, Section 2.2.2.6).  This buoyancy drag correction (produces an 
increase in drag) is given by 

 

, , 2 3 / 2(1 )

w f
D wkb D aC C

M

ε ε+
∆ =

−
  (7) 

Combined blockage: 
 
The combined blockage is obtained by adding the blockages due to the wing, fuselage 
and wake, with a compressibility correction adjustment as 
 

)1(

)4.01(

)1( 2

2

2/32 M

M

M

wkfw

−

+
+

−

+
=

εεε
ε   (8) 

  
5. Detailed Formulation for Downwash Corrections 
 
The change in angle of attack at the quarter-chord location due to the walls is given by 

                                                 
1 A more refined wake blockage model accounting for separated flow drag developed by Maskell 
(Reference 2, Section 6.2.3) is available.  But it is not used here because of its need for detailed analysis, 
such as finding of the minimum drag, slopes, etc. from the drag polar, which would prevent its use for pre-
test prediction. 
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1 0 ,
ref

L u
S

C
C

α δ∆ =     (9) 

Here 1α∆ is in radians and δ0  is a  factor that is a function of the span load distribution, 

model span to tunnel width ratio and the test section shape, usually with a value around 
0.125.  The value of  δ0   is obtained as below.  First, the vortex span ratio /vb b  is 

obtained as a function of  the wing aspect ratio and wing taper from a table corresponding 
to Fig. 10.11, page 382 of Ref. 3.  The ratio /eb b  is computed as 0.5 (1 / )vb b+ .  The 

value of δ0  is obtained from a table corresponding to Fig. 6.21 of Ref. 8 as a function of 
the tunnel aspect ratio and /eb b .  The angle of attack correction is then computed. 

 
There is an additional angle of attack correction scα∆ due to the change in streamline 

curvature produced by the walls.  This is given as 
 

,
1 2

ref L u
sc

S C
c

C H
α δ

β
∆ =    (10) 

 
The parameter 1δ is obtained from a table corresponding to Fig. 3.4 of Ref. 1, which gives 

1 0/δ δ  as a function of B/H.  The correction due to upwash on drag is computed as 

 

[ ]{ }, , 1 , 1cos( ) 1 sin( )D D u L u QC C C Cα α α∆ = ∆ − + ∆           (11) 

 
where 

QQ

Q
CQ ∆+

=  (12) 

 
The correction due to upwash on lift is computed as 
 

[ ]{ }, , 1 , 1cos( ) 1 sin( )L L u D u QC C C Cα α α∆ = ∆ − − ∆   (13) 

 
The angle of attack correction is reported as the sum of the correction at the ¼ chord and 
the correction due to change in streamline curvature, which is 
 

1 scα α α∆ = ∆ + ∆     (14) 

 
The correction to pitching moment produced by streamline curvature is given as 
 

8
sc L

M Q
C

C C
α

α
∆ ∂ ∆ =  ∂ 

   (15) 

 
The factor of 1/8 is true for a rectangular wing only; real wings will have larger factors. 
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6. Formulation for Slotted-Wall Corrections 
 
Corrections for slotted walls have been discussed in a number of studies, both analytical 
as well as computational.  The problem of inflow/outflow from test section to the tunnel 
plenum is a complex one, not easily amenable to simple image methods.  Inviscid 
homogeneous flow near the walls is a simplifying assumption made to reduce the 

boundary condition to the simple form, * 2 0x xnKφ φ+ = , where *K  is a dimensional slot 

parameter defined as 
 

* ln csc
2

l a
K l K

l

π
π

 = = 
 

  (16) 

 
where a is the slot width and l is the distance between slots.  The value of K has been 
determined analytically as above and determined empirically as well.   The empirical 
value depends on the viscous flow in the slots, the number of slots, the degree of 
openness, Mach number, etc.  A value suggested for the 6% open test section of the NTF 
is 3.6 (Ref. 2, Fig. 5.16), which corresponds to a multiplication factor of 4.75 from the 
inviscid analytical value of K = 0.76.  Recent comparisons with TWICS results indicates 
that this factor may even be higher (7.5 in one case).  A variable called  factor is 
provided in the code to specify this empirical multiplication factor. 
 
Slot parameters F and P are defined in Ref. 4 as 

F
P

H

K
F

+
==

1

1
;

2 *
  (17) 

Ref. 4, Fig. 5.5 provides a chart of sΩ , which is the ratio of slotted tunnel blockages to 

the solid wall blockages as a function of the openness ratio P and tunnel aspect ratio H/B.  
With the value of sΩ known, slotted-wall blockages can be computed from the 

corresponding solid-wall values.  Ref. 4 also provides charts of the tunnel upwash ratios 
δ0 and 1δ  (Fig.s 5.12 and 5.13) as a function of P and B/H.  For the slotted tunnel 

applications, these values are used in place of the solid-wall values in Equations 8 and 9. 
 
7. Applying Corrections 
 
All the corrections listed below are added to the uncorrected values to obtain the 
equivalent free-air values. 
 
The blockage corrections for Mach number and dynamic pressure are as follows. 
 

ε)2.01( 2MMM +=∆   (18) 

ε)2( 2MQQ −=∆    (19) 
 
The reference velocity is corrected by refV V ε∆ =  
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Corrections to the angle of attack α∆  is given by Equation (14).  The final corrected 
drag coefficient is obtained from Equation (11) as 
 

, , , ,D c D u Q D D wkbC C C C Cα= + ∆ + ∆   (20) 

 
The final corrected lift coefficient is obtained from Equation (13) as 
 

, , ,L c L u Q LC C C C α= + ∆   (21) 

 
The correction to the pitching moment is obtained as 
 

, ,M c M u Q MC C C C= + ∆   (22) 

 
8. CMWALL Subroutine Call Details 
 
The CMWALL subroutine is called as 
 
subroutine cmwall(amachu,qu,vrefu,alphau,clu,cdu,cmu, 
          eps,dalpha,dcd,dcl,dcm,dq,dv,dm,dcdb,cdc,clc,cmc) 
 
with the call list defined as below.  All quantities are in conforming U.S. units (ft., lb, 
sec.).  All the variables are REAL*4. 
 
 

      Input list: 
      
     amachu Mach number, uncorrected for wall 
     qu  dynamic pressure, uncorrected for wall, psf 
     vrefu tunnel velocity, uncorrected for wall, fps 
     alphau angle of attack, uncorrected for wall 
     clu  lift coefficient (stability axis), uncorrected for wall 
     cdu  drag coefficient (stability axis), uncorrected for wall 
     cmu  pitching moment coefficient (stability axis), uncorrected for wall 
 
Note that only amachu, clu and cdu are actually used in the calculation of the primary 
correction terms eps and dalpha. 
 
      Output list: 
      
     eps  combined blockage parameter 

dalpha wall correction on angle of attack 
     dcd  wall correction on cdu due to lift interference only 
     dcl  wall correction on clu due to lift interference only 
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 dcm  wall correction on cmu due to streamline curvature only 
     dq  wall correction on qu, psf 
     dv  wall correction on vrefu, fps 
     dm  wall correction on amachu 

dcdb  buoyancy correction on drag coefft. due to wake blockage gradient 
cdc drag coefficient corrected for blockage and lift interferences and 

wall-induced buoyancy 
clc  lift coefficient corrected for blockage and lift interferences 
cmc pitching moment  coefficient corrected for blockage and lift 

interferences 
 
An include file called walldata is also required, which provides tunnel and model 
geometry data to the program.  This file should be set up with the appropriate values prior 
to a test.  Input data definitions are given below. 
 
Definitions of input parameters in the file ‘walldata’ 
 

iwdbg :debug flag, 0 for no detailed print,1 for detailed debug print 
   type INTEGER 
     itunl :1 for NTF-solid wall; 2 for NTF-slotted wall; 3 for 14x22-Ft; NTF slotted 
   wall openness (floor and ceiling) is determined by ivent 
   type INTEGER 
     itsconf :1 for full-span model; 2 for semispan model;  type INTEGER 
  ivent :% openness (NTF slotted case only),=6 (all slots open, usual case), 4 or 2 
   type INTEGER 
     wingvol :wing volume; for semispan, enter corresponding full-span value 
     tcav :maximum thickness ratio (t/c) of the representative wing section 
     naca :airfoil type representing the average wing section; naca=44 if wing 

section can be approximated by a 4-digit NACA section; naca=64, 65, or 
66 for corresponding 6-digit NACA series; type INTEGER 

     twob :wing span; for a semispan model, input the equivalent full-span value 
     sref :wing reference area, for semispan, input full-span wing value 

     ar  :wing aspect ratio, usually this is refSb /2 of the full-span wing 

     taper :taper ratio (tip chord / root chord), input 0.57 for elliptical planform wing 
  cbar :mean aerodynamic chord (MAC) 
  clalpha :lift curve slope, /LC α∂ ∂  in /deg units 

     dequiv :maximum diameter of fuselage (from an equivalent circular section) 
     fusl :fuselage length 
     fusvol :fuselage volume, for semispan enter full-span value 
 
9. Test Cases 
 
Three test cases are provided covering the range of options.  The test cases are: 
 
1. 14x22-Ft Subsonic Tunnel:  Semispan wing (Trap wing), Test 506, Run 109 data. 
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2. 14x22-Ft Subsonic Tunnel:  Full-span Elliptical wing, Test 511, Run 195 data. 
3. NTF solid wall: Full-span wing (Pathfinder 1), Test 114D, Run 313 data. 
 
The geometric data used in these examples were obtained from available sources such as 
drawings, test reports, etc.  However, note that whenever exact data were not available, 
an estimate was used. 
 
Test case 1: 14x22-Ft Subsonic Tunnel:  Semispan wing (Trap wing), Test 506, Run 109 
 
The tunnel and model input data as specified in the file walldata are as below. 
 
      data iwdbg/0/ 
      data itunl,itsconf,ivent/3,2,0/ 
      data wingvol,tcav,naca/8.752,0.11,44/ 
      data twob,sref,ar,taper/14.1765,44.056,4.561,0.395/ 
      data cbar,clalpha/3.3,0.075/ 
      data dequiv,fusl,fusvol/1.713,9.893,17.034/ 
 
The test data for 28 selected points in a run are provided in the standard TWICS format 
(Ref. 7) to a test program that calls CMWALL.  The Mach number is a constant at 0.2 for 
this run.  The classical correction results output from CMWALL are shown in Fig. 2.  
The variation of the blockage corrections ε, ∆M and ∆Q as a function of the uncorrected 
angle of attack α (variable alphau) is shown in the first 3 frames of the plot.  Frame 4 
shows the correction on the angle of attack due to lift-induced wall effects as a function 
of the uncorrected angle of attack.  Frame 5 shows the correction on the lift coefficient 
due to lift interference.  In frame 6, the correction on drag due to buoyancy produced by 
the wake blockage gradient is shown in addition to the lift-induced drag correction.  
Frame 7 shows the correction on the pitching moment due to lift, which is due to the 
wall-induced change in streamline curvature.  Note that all corrections are added to the 
measured values.  Finally, frame 8 shows the lift-drag curve before and after correction.  
The changes in CL and CD  are both due to lift interference and also due to the change in 
Q due to blockage. 
 
Test case 2: 14x22-Ft Subsonic Tunnel:  Full-span Elliptical wing, Test 511, Run 195 
 
The tunnel and model input data as specified in the file walldata are as below. 
 
      data iwdbg/0/ 
      data itunl,itsconf,ivent/3,1,0/ 
      data wingvol,tcav,naca/3.5,0.12,44/ 
      data twob,sref,ar,taper/6.75,6.45,7.06,0.57/ 
      data cbar,clalpha/1.20,0.10/ 
      data dequiv,fusl,fusvol/0.60,2.80,2.5/ 
 

The test data for 13 points in a run is provided in the standard TWICS format to a test 
program that calls CMWALL.  The Mach number is constant at 0.22.  The classical 
correction results output from CMWALL are shown in Fig. 3.  This is a much smaller 
wing compared to the trap wing in example 1 as can be seen from the much lower  
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blockage values and lift interference values.  Since the flow is attached in the small angle 
of attack range of –3 to 12, variation is mostly linear. 
 
Test case 3:  NTF solid wall: Full-span wing (Pathfinder 1), Test 114D, Run 313   
 
The tunnel and model input data as specified in the file walldata are as below. 
 
      data iwdbg/0/ 
      data itunl,itsconf,ivent/1,1,0/ 
      data wingvol,tcav,naca/0.12,0.12,44/ 
      data twob,sref,ar,taper/4.42,1.98,9.8,0.2/ 
      data cbar,clalpha/0.56,0.05/ 
      data dequiv,fusl,fusvol/0.25,4.15,0.2/ 
 

The test data for 15 points in a run is provided in the standard TWICS format to a test 
program that calls CMWALL.  The Mach number is constant at 0.2.  The classical 
correction results output from CMWALL are shown in Fig. 4.  Similar to Example 2, this 
is a small model for this tunnel section, as can be seen from the low values of blockage 
and lift interference parameters.  Since the flow is attached in the small angle of attack 
range of –2 to 10, variations are mostly linear. 
 
10. Program Limitations 
 
Results are based on the assumptions of small model and attached flow.  CMWALL does 
not consider support interference or the effect of tail surfaces (which is important in the 
pitching moment corrections).  Model is assumed to be in the center of the tunnel.  
Corrections for high subsonic Mach numbers may be suspect due to assumptions of 
linearity and the simplified Prandtl-Glauert compressibility correction factor. 
 
11. Program Notes 
 
The source program is ~/cm/source/cmwall.f.  Examples of the include file 
walldata are in ~/cm/source as well as in  ~/cm/testcases.  The test cases 
discussed above are in three sub-directories under ~/cm/testcases.  The test cases 
require test data input files which are also provided under ~/cm/testcases. 
 
The test program outputs a TECPLOT format file called corr.plt.  Layout files are 
provided to plot the results shown in the figures in this report. 
 
When input parameters are outside of allowed limits (potentially leading to extrapolation 
from tables), the error flag ierr is set to 1 and default values are used to prevent 
program termination.  A print output such as ‘ierr=1, setting ak1w=1.0’ is also 
produced.  In such cases, debug runs with iwdbg=1 can be made to locate the input 
parameter that may be out of bounds. 
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Figure 2. Classical wall correction results from CMWALL, test case 1.
NASA LaRC 14x22-Ft Subsonic Tunnel, semispan trap wing test 506, run 109.
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Figure 3. Classical wall correction results from CMWALL, test case 2.
NASA LaRC 14x22-Ft subsonic tunnel, full-span elliptical wing test 511, run 195.
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Figure 4. Classical wall correction results from CMWALL, test case 3.
National Transonic Facility, solid wall, full-span Pathfinder-1 (PF-1) test 114D, run 313.
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